An Optical Multi - Mesh Hypercube : A Scalable Optical Interconnection Network for Massively Parallel Computing

نویسنده

  • Hongki Sung
چکیده

A new interconnection network for massively parallel computing is introduced. This network is called an Optical Multi-Mesh Hypercube (OMMH) network. The OMMH integrates positive features of both hypercube (small diameter, high connectivity, symmetry, simple control and routing, fault tolerance, etc.) and mesh (constant node degree and scalability) topologies and at the same time circumvents their limitations (e.g., the lack of scalability of hypercubes, and the large diameter of meshes). The OMMH can maintain a constant node degree regardless of the increase in the network size. In addition, the exibility of the OMMH network makes it well-suited for optical implementations. This paper presents the OMMH topology, analyzes its architectural properties and potentials for massively parallel computing, and compares it to the hypercube. Moreover, it also presents a three-dimensional optical design methodology based on free-space optics. The proposed optical implementation has totally space-invariant connection patterns at every node, which enables the OMMH to be highly amenable to optical implementation using simple and e cient large space-bandwidth product space-invariant optical

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Optical Multi-Mesh Hypercube: A Scalable Optical Interconnection Network

A new interconnection network for massively parallel computing is introduced. This network is called an Optical Multi-Mesh Hypercube (OMMH) network. The OMMH integrates positive features of both hypercube (small diameter, high connectivity, symmetry, simple control and routing, fault tolerance, etc.) and mesh (constant node degree and scalability) topologies and at the same time circumvents the...

متن کامل

Design of scalable optical interconnection networks for massively parallel computers

The increased amount of data handled by current information systems, coupled with the ever growing need for more processing functionality and system throughput is putting stringent demands on communication bandwidths and processing speeds. While the progress in designing high-speed processing elements has progressed significantly, the progress on designing high-performance interconnection netwo...

متن کامل

A Scalable Optical Hypercube - based Interconnection Network for Massively Parallel Computing

Two important parameters of a network for massively parallel computers are scalability and modularity. Scalability has two aspects; size and time (or generation). Size-scalability refers to the property that the size of the network can be increased with nominal e ect on the existing con guration. Also, the increase in size is expected to result in a linear increase in performance. Time-scalabil...

متن کامل

A Spanning Bus Connected Hypercube: A Gradually Scalable Interconnection Network for Massively Parallel Computing

A new scalable interconnection topology suitable for massively parallel systems called the Spanning Bus Connected Hypercube (SBCH) is proposed. The SBCH uses the hypercube topology as a basic building block and connects such building blocks using multi-dimensional spanning buses. In doing so, the SBCH combines positive features of both the hypercube (small diameter, high connectivity, symmetry,...

متن کامل

A Hypercube-based Scalable Interconnection Network for Massively Parallel Computing

An important issues in the design of interconnection networks for massively parallel computers is scalability. A new scalable interconnection network topology, called Double-Loop Hypercube (DLH), is proposed. The DLH network combines the positive features of the hypercube topology, such as small diameter, high connectivity, symmetry and simple routing, and the scalability and constant node degr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1994